
CAAD futures Digital Proceedings 1995 163 1
63

The Advanced Knowledge Transfer System

Larry Lucardie
Johan De Gelder
Adriaan Huijsing

TNO Building and Construction Research
Section Knowledge-Based Systems
P 0 Box 49
2600 AA Delft
NETHERLANDS

The joint application of decision tables and Prolog seems to meet all the necessary
requirements to be met by a language or modelling knowledge. Despite the In h
complementarity of decision tables and Prolog, it appears that they still yield a language with
certain drawbacks. The Advanced 'knowledge Transfer System TS) has been developed to
take advantage of this complementarity and simultaneously eliminate these drawbacks. To
show the capabilities of AKTS three knowledge-based systems in the building and
construction sector are described which recently have been developed using AKTS.

Keywords: knowledge-based systems, modelling language, decision tables, Prolog

I Introduct ion

The last decade knowledge-based systems are becoming increasingly important for the daily
practice of many organisations. Today they even have attained a permanent and secure role in trade
and industry (Hayes-Roth & Jacobstein, 1994). Yet, the development of knowledge-based systems
that are applicable in the daily practice of organisations, remains problematic. Many prototypes of
knowledge-based systems simply never go into usage. A precondition for the specification, design
and implementation of operational knowledge-based systems is the availability of an adequate
language. Such a language should not only offer expressive power for the modelling of knowledge,
but should also provide validation and simulation facilities.

The aim of this article is to describe a computer tool that supports the specification, design
and implementation of knowledge-based systems by offering decision tables and Prolog as a
modeling language. The structure of the paper is as follows. First, we analyse the benefits and
drawbacks of decision tables and Prolog as a language to model knowledge (Section 2). Then, we
describe the Advanced Knowledge Transfer System (AKTS) as a tool taking benefit of the integration
of decision tables and Prolog, while avoiding associated drawbacks (Section 3). To illustrate the
possibilities of AKTS we shortly discuss three examples of knowledge-based systems in the building
and construction sector that have been developed using AKTS (Section 4). The article is rounded off
with conclusions concerning the modelling, validation and simulation facilities of AKTS (Section 5).

2 Decision tables and Prolog as a modelling language

Some authors claim that decision tables and Prolog together offer a range of powerful
formalisms and techniques allowing a formally unambiguous description of realworld phenomena
that is close to natural understanding (Reilly, Salah, & Yang, 1987, p.30). In this section we will
investigate this claim. We first describe the potentials of decision



CAAD futures Digital Proceedings 1995 164 1
64

tables as a modeling language and then proceed by discussing Prolog's capabilities as a modeling
language and the joint use of decision tables and Prolog.

2.1 Decision Tables
A decision table can be informally defined as:
'...a table that represents the exhaustive whole of mutually exclusive conditional statements

within an a priori defined problem domain.' (Verhelst, 1980, p.9)
An example of a decision table is presented in Figure 1. The table named Abstract, refers to

a fictitious domain. The component to the left of the double vertical line is called the stub. The first
part of the stub, the part that is located above the double horizontal line, contains condition
subjects. The second part of the stub, located below the double horizontal line, contains action
subjects. The component to the right of the double vertical line displays six conditional statements
about our fictitious domain. These statements are called rules. They are displayed by means of
columns. Rules describe the connection between condition subjects and action subjects. Above the
double horizontal line the rules contain a condition alternative for each condition subject. Below the
double horizontal line the rules contain an action alternative for each action subject. According to
Verhelst's definition a decision table should be exhaustive and exclusive. Exhaustiveness means that,
within the domain of the decision table, every possible combination of condition alternatives should
be accounted for. Exclusiveness means that no situation is permitted to be described in more than
one rule.

Figure 1: A graphical Sketch of a Decision Table

For most applications a single decision table is not sufficient. In the majority of cases we need
a decision table system: a set of at least two decision tables in which each decision table is linked to
another table belonging to the same system. We can distinguish two types of links. The first type of
link is established by the phenomenon that a condition subject with at least one of its alternatives of
one decision table occurs as an action subject with corresponding action alternatives in another
decision table. The first table is then called a head table, the second table is called a condition
subtable. The second type of link is established by the phenomenon that an action subject and one
of its alternatives of one decision table occurs in the same form in another table. The first table again
is called a head table, the second table is now called an action subtable. Usually, the action subject
in question, in this action subtable, is further specified by means of other action subjects. Figure 2
displays an example of a decision table system containing a head table, a condition subtable and an
action subtable.

Much of the literature advocating decision tables is devoted to their applicability in all
phases of the software engineering life cycle from specification through design, implementation,
testing, modification and documentation to maintenance. The advantages of decision tables for
software engineering purposes are succinctly expressed by Reilly, Salah & Yang:

the ubiquitous use of decision tables within the life cycle has conferred on them a
reputation for compactness, self-documentation, modifiability handling complex logic, redundancy
and completeness checking, high degree of non-procedurality, and automatic conversion to code.'
(1987, p.19l)

However, the employment of decision tables has its drawbacks:
(1) Decision tables are not the most efficient means to model very simple pieces of

knowledge. For the modelling of database tables, for instance, it's not effective to use decision tables.
In Section 4 we will illustrate this by an example.

(2) They are not fully appropriate for modelling knowledge in which a (frequent) use of
recursions, iterations or other repeat structures is required.



CAAD futures Digital Proceedings 1995 165 1
65

(3) Simulation by hand is possible, but not a task which can be undertaken easily. Decision
tables do not generate prototypes that can facilitate simulation processes (Davis, 1988, p.1113).

(4) Decision tables do not provide automated checking facilities (Davis, 1988, p. 1113).
(5) Drawing decision tables is a very time-consuming and difficult process. As long as no

advanced graphical tools are available to support the complex drawing of decision tables, the
acceptation of decision tables will be retarded.

Figure 2: A Decision Table System

2.2 Prolog
Under the influence of Kowalskis ideas on logic and theorem proving, Prolog was designed

around 1970 by A. Colmerauer of the University of Marseilles. Prolog has been developed from the
idea that a good programming language is a powerful modeling tool for organising, expressing,
communicating and executing knowledge. One of the reasons that we can regard Prolog as a
modelling language is that it allows users to program by description. Well-styled Prolog programs are
readable as logical statements saying something about the real -world. Let us illustrate this by a view
simple Prolog statements:



CAAD futures Digital Proceedings 1995 166 1
66

These Prolog statements describe a simple triangle. The example is borrowed from Gonzalez
et al. who developed a geometric modeler with particular emphasis to update three-dimensional
models by means of operations on two-dimensional views. (Gonzalez, Williams, & Aitchison, 1984).
Though this use of Prolog for CAD applications is interesting, of much more importance is the
underlying idea that knowledge can be modelled using Prolog and that the Prolog statements are
executable! Prolog admits the execution of knowledge and thus provides facilities to validate and
simulate knowledge. This automatic generation of prototypes yields an important advantage over
decision tables which are not executable. An extensive analysis of the Prolog's background as
modelling language is provided in (Lucardie, 1994). Prolog also has its weak points. Prolog does not
impose, for instance, a methodology for modelling knowledge.

2.3 Decision tables and Prolog
The application of decision tables and Prolog seems to yield a convenient complementarity.

Decision tables are a method for organising and documenting knowledge in a logical manner that
permits easy inspection and analysis, while Prolog can be viewed as a logical modelling language that
admits simulation of knowledge.

However, the joint application of decision tables and Prolog still yields a language with
certain limitations. This language does, for instance, still not offer facilities for automated validation
and automated simulation of decision tables. Furthermore, essential graphical facilities for drawing
decision tables are lacking.

3 The Advanced Knowledge Transfer System

In this section we will describe the modelling, validation and simulation facilities of AKTS.

3.1 Modelling facilities: the graphical decision table editor
To take full advantage of the structuring facilities of decision tables, AKTS stimulates a user

to start knowledge modelling with the creation of a decision table system. In the previous section we,
however, observed that the adoption of decision tables is retarded because of the fact that drawing
and modifying tables is a complicated and timeconsuming process. This is mainly due to the fact
that the modification of a part of a decision table often has consequences for other parts of the
decision table, so that the complete decision table has to be redrawn. Even a slight modification may
require redrawing a complete decision table.

To intercept this problem, AKTS is equipped with a decision table editor that provides a
multitude of convenient graphical facilities. This editor has a carefully designed multi-window,
menu-driven mouse-oriented interface for optimal communication with users. It allows users to
quickly reconstruct and modify a complete decision table system. The editor shows 'intelligent
behaviour': it knows what a correct table looks like and applies this knowledge to support the user in
the drawing process. The editor also knows how to obtain a decision table that occupies a minimal
amount of space. This knowledge is used, if necessary, to calculate the measures of a minimal table
after each user's action.

Furthermore, AKTS offers a facility to insert Prolog statements. This is necessary to insert
knowledge that cannot easily be represented through decision tables. These statements can be used
while simulating knowledge. In the next section we will exemplify the use of Prolog through AKTS.



CAAD futures Digital Proceedings 1995 167 1
67

Figure3: Selecting a Subtree in a Decision Table and Copying it into the Clipboard of
AKTS

3.2 Validation facilities: the integrity control sub-system
The Integrity Control Sub-system of AKTS is responsible for maintaining integrity of

knowledge. It offers possibilities to check
(1) the exhaustiveness and exclusiveness of every decision table and
(2) the formal links between head tables and subtables.
The exhaustiveness and exclusiveness integrity constraints are based on the formal

definitions of exhaustiveness and exclusiveness. The integrity constraints for links are based on the
formal definitions of (bilateral) connections (Lucardie, 1994).

3.3 Simulation facilities: the inference engine
The inference machine of AKTS is goal-oriented. It departs from a list of goal parameters

(Parameters are conditions or actions in a decision table or other variables occurring in a field of
application). The inference machine attempts to trace these goal parameters in order of appearance.
Tracing a parameter is the process of trying to find a value for a parameter. The inference machine
of AKTS uses a backward chaining strategy, though it is possible to influence the inference engine.
During this inference process parameters that are not goal parameters also must be traced. These
non-goal parameters are relevant for tracing the goal parameters. There are several ways to find a
value for a parameter; they are described below.

(1) If the parameter to be traced has an Ask first property, its value is simply asked. Whether
the user has to make a selection out of a list of possible values or type in the exact value of the
parameter depends on the Type property of the parameter. If the value of the parameter can be
found in other decision tables, the user has the option of indicating that he does not know the
answer.

(2) Another way of finding a value for a parameter is provided by the When Needed
property. The When Needed property is often used if the value of a parameter has to be calculated
and the necessary formulas are available in the form of the When Needed property value. Another
use of this property is to design a query to a database as a When Needed property value. The
calculation of the query then returns the value of the parameter.



CAAD futures Digital Proceedings 1995 168 1
68

(3) The value of a parameter can also be found by tracing decision tables. AKTS then tries to
look for a decision table that contains the parameter to be traced as an action parameter. The value
of the action parameter depends on the condition parameters of the decision table. In order of
appearance the condition parameters are traced until the value of the action parameter is found.
When the condition parameters are traced again other decision tables can be searched through. In
this way a whole system of decision tables can be traced by the inference machine of AKTS.

(4) If still no value is found the inference machine uses the Default property if present. The
value of the Default property becomes the value of the parameter.

(5) If the above strategies fail, the user is finally asked (again) to provide a value. But now the
user is forced to provide an answer and does not have the possibility to answer 'Don't Know'.

4 Examples of Knowledge-Based Systems Using AKTS.

In this section we shortly describe three knowledge-based systems which are specified,
designed and implemented using AKTS.

4.1 Fire Safety, Advisory System
TNO Building and Construction Research developed a knowledge based system using AKTS

that helps to verify building designs with respect to Fire-Safety Regulations.
Knowledge of Fire-Safety Regulations is critical for architects to design fire-safe buildings

and for local authorities to verify fire-safety of building designs. However, effective application of
this knowledge in the Netherlands is a problem due to volume, complexity and inaccessibility of the
Dutch Fire-Safety Regulations. The Fire-Safety Regulation are known as the most complex part of the
Dutch Building Regulations. This often leads to misunderstanding and misinterpretation of the
regulations by people in practice.

Figure 4 shows act of article 235 of the Dutch Building Regulations. Article 235 gives rules
for escaping from a smoke compartment in case of fire. A smoke compartment is a part of a building
having smoke resistant walls. In case of a fire in the smoke compartment people can escape to
adjacent smoke compartments that are protected against smoke for a certain period because of the
smoke resistant walls.

Figure 4: A part of Article 235 of the Dutch Building Regulations

Article 235 prescribes that in principle each smoke compartment should have at least two
independent escape ways. This can be realised in two different ways. From an entrance of a smoke
compartment people can escape in two different and independent directions (part 1) or a smoke
compartment has two entrances which both lead to at least one independent escape way (part 2b).



CAAD futures Digital Proceedings 1995 169 1
69

In specific circumstances it is allowed that a smoke compartment has only one
escape way. Parts 2a, 2c, 3, 5 and 6 of article 235 give rules for these circumstances. Figure

5 shows one of the decision tables of the Fire Safety Advisory System that represents the rules for the
allowance of a single escape way from a smoke compartment.

Figure 5: Fire regulation knowledge represented in a Decision Table

The Decision Table clearly shows the situations in which one escape is allowed. The
knowledge in the decision table can easily be validated on correctness, completeness and
consistency by experts in the fire-safety domain. Non-experts can easily access the knowledge,
especially when this knowledge is accessed using AKTS. Users of the system just answer questions
prompted by AKTS and the system gives advise depending on the given answers. Problems of
misunderstanding and misinterpretation disappear. With the Fire Safety Advisory System, people in
practice don't need to have elaborate knowledge of the fire-safety regulations, but still they are able
to apply the regulations in an efficient and effective way.

4.2 Rent subsidy
Under specific people in the Netherlands can get rent subsidy from the Ministry of Public

Housing. This subsidy is meant to provide lower income groups with the opportunity to live in
dwellings of a certain quality that would otherwise be too expensive. The rules that regulate this
subsidy are, however, quite complicated. For this reason, a knowledge based system is developed
that supports government officials in the decision-making process concerning the eligibility and
height of rent subsidy.

The knowledge-based system consists of two parts. In the first part the eligibility of an
applicant is assessed based on age, marital status, income and living conditions. Knowledge to make
this assessment is modelled in decision tables using AKTS.

In the second part of the knowledge based system, the height of the rent subsidy is
calculated. After some arithmetic preprocessing of the applicants income, the height of the rent
subsidy can be found in an ordinary table. There are several of these tables, each of which is
applicable in different situations. These tables are not modelled in decision tables, but in Prolog. Of
course it is possible to use decision tables, but that would result in very large decision tables with
hundreds of rules. Not only would it be a laborious task to construct and maintain these decision
tables, the readability of the knowledge model would not be positively influenced.

A small part of one of the rent subsidy tables, modelled in Prolog, is shown below:



CAAD futures Digital Proceedings 1995 170 1
70

The first and second argument represent limits to income and rent. The third argument
shows the height of the rent subsidy. To interpret the tables, and to perform some additional
arithmetic, a small Prolog algorithm was written. A part of this program is shown below:

calc_rent_subsidy(Table_no,Income_applicant,Income..partner,Rent,Rent_subsid
y):

max(Income_applicant,Income_partner,High_income),
min(Income_applicant,Income_partner,Low_income),
max((Low_income-2000),O,Relevant_low_income),
Income is High _income+Relevantiow_income/2,
consult_table(Table_no,Income,Rent,Rent_subsidy).

The knowledge based system reflects how decision tables and Prolog complement each
other. Where decision tables are appropriate for complex decision logic, Prolog can be used for more
database-like knowledge structures and arithmetic algorithms.

4.3 Evaluating indoor environments of buildings
Complaints about the indoor environment in offices are widespread. In many cases, finding

causes for these complaints is far from easy. For several complaints different causes are possible.
Headaches for instance can be due to high temperatures, high noise levels, high concentrations of
certain pollutants or inferior lighting conditions. Many factors have to be considered like building
materials, heating ventilation and airconditioning system, maintenance aspects, outdoor
environment and activities in the building.

Using AKTS a system for diagnosing complaints about the indoor environment in offices has
been set up. Experience and literature data with regard to the relations between indoor
environment parameters and health complaints have been brought together in decision tables. This
has been done in close cooperation between a knowledge engineer and experts on indoor
environment.

Four types of indoor environment parameters have been distinguished: indoor climate
(temperature, humidity, air velocity), indoor air quality (pollutants), light and noise. The decision
tables, which can be seen as a compact representation of the knowledge in a certain field, can be
read and understood by the experts. In this way they can easily check knowledge on correctness,
completeness and consistency.

When a specific complaint is entered, the diagnostic tool identifies possible causes. This is
done by checking whether known causes for the complaint are present in the building. If so, it is
checked whether it is likely that the factor or parameter had caused the specific complaint.
Questions to gather the necessary information about the building, hvac system, activities etcetera
are presented to the user. From the information the possible cause(s) for the complaints are derived.
Based on the diagnosis, advices to improve the situation are derived and presented.

Using the indoor environment diagnostic system, evaluations of complaints about the indoor
environment can be made quickly, also by non-experts. This diagnosis is a sound basis for choosing
measures to realise a healthy building. Users of the system can be people dealing with facility
management in office buildings, consulting engineers and people responsible for health and safety
at the workplace.

5 Conclus ion

The conclusion is justified that, to a considerable degree, AKTS takes advantage of the
complementarity of decision tables and Prolog. AKTS not only uses the strong points of decision
tables (their structuring capabilities, their well-organised representation of knowledge permitting
easy validation and simulation by hand), but also intercepts their weak points (lack of possibilities to
incorporate knowledge in databases and arithmetic and recursive definitions) by using Prolog.

It is also justified to draw the conclusion that AKTS, in a convenient way, overcomes the
three limitations observed of jointly applying decision tables and Prolog:



CAAD futures Digital Proceedings 1995 171 1
71

lack of facilities for automated validation and automated simulation and lack of facilities for drawing
decision tables.

First, AKTS permits automated validation. By dealing with exhaustiveness and exclusiveness
and (bilateral) connections between decision tables, the Integrity Control Sub-system of AKTS helps
to validate the model. Furthermore, by simulating knowledge in decision tables, validation of the
program code is superfluous. The knowledge model is at the same time the program code.

Second, AKTS permits automated simulation. The inference engine of AKTS provides
extensive facilities to simulate knowledge including facilities for conducting What-if analyses.

Third, the Graphical decision table Editor of AKTS offers advanced graphical support to
quickly construct and modify decision table systems.

The examples show the expressive power and flexibility of AKTS.

6 Re fe rences

Davis, A. M., A Comparison of Techniques for the Specification of External System Behavior,
(Communications of the ACM, 31(9), 1988); 1098-1115.

Gonzalez, J. C., Williams, M. H., & Aitchison, E. I., Evaluation of the Effectiveness of Prolog for
a CAD application, (IEEE Computer Graphics and Applications., 1984)

Hayes-Roth, F., & Jacobstein, The State of Knowledge-Based Systems, (Communications of
the ACM, 37(3), 1994); 27-39.

Lucardie, G. L., Functional Object-types as a Foundation of Complex Knowledgebases
Systems. (Computer Science, Technical University Eindhoven, 1994).

Reilly, K. D., Salah, A., & Yang, C., A Logic Programming Perspective on Decision Table Theory
and Practice (Data and Knowledge Engineering, 2, 1987); 191-210.

Verhelst, M., De Praktijk van Beslissingstabellen, (Deventer: Kluwer, 1980).


